

European Security and Defence College Doc: ESDC/2021/073 Date: 17/03/2021 Origin: Executive Academic Board

Curriculum

To be reviewed by	Activity Number	Applied Cryptography	ECTS
February 2023	211		2

Target audience	Aim
Participants should be junior to mid- ranking (at technical level) officials dealing with aspects in the field of cyber security from Member States (MS) and EU Institutions and Agencies. They should have basic knowledge of IT systems and preferably Python programming language. Course participants must be available during the entire course and should be ready to participate with their specific field of expertise and experience	This course aims to enable participants to comprehend the main notions of applied cryptography, help them build their own encryption utilities by using hash functions, encryption algorithms and widely available tools. Furthermore, this course will allow the junior ranking to senior officials from MS and EU Institutions and Agencies to exchange their views, share best practices on applied cryptography topics by improving their knowledge, skills and competencies in the cyber domain. By the end of this course, the participants will be familiar with the terminology; concepts and tools used in applied cryptography and share views on how to protect data in personal and business environment.

earning outcomes	Knowledge	 K1 - Define the basic notions, terminology and concepts related to applied cryptography K2 - Compute bitwise operations K3 - Define the basics of Randomness, One Time Pad, Abstract Syntax Notation One (ASN.1), Hash functions, symmetric cryptography (Advanced Encryption Standard (AES)), Asymmetric Cryptography (RSA), Public Key Infrastructure (PKI), Public Key Certificates, Digital Signatures, Transport Layer Security (TLS), cryptographic currency transactions
	Skills	 S1 - Produce ASN.1 description language code to define data structures S2 - Produce cypher from plaintext and the opposite (decryption) S3 - Outline the basic characteristics of Hash functions, Encryption algorithms and Certificates S4 - Apply Hash functions, Encryption algorithms, Certificates, TLS S5 - Apply Pretty Good Privacy (PGP) to encrypt and decrypt data
	Competences	C1 - Create symmetric cryptosystem C2 - Generate Certificates, Public Private Key C3 - Create asymmetric encryption and signing utility

Evaluation and verification of learning outcomes

The course is evaluated according to the Kirkpatrick model: it makes use of level 1 evaluation (based on participant's satisfaction with the course).

In order to complete the course, participants have to accomplish all learning objectives, which are evaluated based on the active contribution in the residential Module, including their syndicate sessions and practical activities as well as on the completion of the eLearning phases: course participants finalise the autonomous knowledge units (AKUs) and pass the tests (mandatory), scoring at least 80% in the incorporated out-test/quiz. At the end of the course, there is active observation by the course director/lead instructor and a feedback questionnaire is filled by the course participants.

However, no formal verification of learning outcome is foreseen; proposed ECTS is based on participants' workload only

Course Structure					
Main Topic	Recommended Working Hours (of that eLearning)		Contents		
One Time pad	6(3)	•	Pseudo-Random Number Generator (PRNG) Bitwise operations One-Time Pad (OTP)		
Abstract Syntax Notation One (ASN.1)	10(4)	•	Types Encoding rules Distinguished Encoding Rules (DER)		
Hash functions	4(2)	•	Data identification and integrity verification Hash-based PRNG Hash chain Hash tree Hash-based Message Authentication Code		
Symmetric cryptography	5(2)	•	AES Block cipher Password based		
Asymmetric Cryptography (RSA)	5(2)	•	RSA encryption Hybrid encryption RSA Public and Private key		
Public Key Infrastructure (PKI) and certificates	10(4)	•	Key management Certificate Authority (CA) Certificates		
Transport Layer Security (TLS)	5(2)	•	Transport Layer Security overview and characteristics		
Crypto Currencies	6	•	Cryptocurrencies transactions (case study) Blockchain Blockchain (transaction log) Anonymity		
TOTAL	51(19)				
Materials Essential eLearning:			Additional information Pre-course questionnaire on learning expectations and possible briefing topic from the specific area of expertise may be used.		
 AKU 104a: Information Security Management Implementation Course AKU 104b: Information Security Management Implementation Course AKU 104c: Information Security Management Implementation Course 			All course participants have to prepare for the residential module by going through the relevant eLearning preparatory phase, which is mandatory. The materials proposed for supplemental (eLearning) study will reflect current developments in the field of cyber security/cyber defence in general and EU policies in particular.		
 Reading material [examples]: The EU Cyber Diplomacy Toolbox (June 2017) The EU Cybersecurity Act (June 2019) The EU's Cybersecurity Strategy for the Digital Decade Regulation (EU) eIDAS Regulation N°910/2014 			In order to facilitate discussion between course participants and trainers/experts/guest speakers, the Chatham House Rule is used during the residential Module: " <i>participants to the CSDP HLC are free to use the information received, but neither the identity nor the affiliation of the speaker(s), nor that of any other participant, may be revealed</i> ".		